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Abstract The global solution of bilevel dynamic optimization problems is discussed. An
overview of a deterministic algorithm for bilevel programs with nonconvex functions partic-
ipating is given, followed by a summary of deterministic algorithms for the global solution of
optimization problems with nonlinear ordinary differential equations embedded. Improved
formulations for scenario-integrated optimization are proposed as bilevel dynamic optimi-
zation problems. Solution procedures for some of the problems are given, while for others
open challenges are discussed. Illustrative examples are given.

Keywords Bilevel program · Dynamic optimization · Nonconvex optimization · Global
optimization · Scenario-integrated optimization

1 Introduction

After several decades of intensive research, deterministic algorithms for the global solution
of nonconvex nonlinear programs (NLPs) and mixed-integer nonlinear programs (MINLPs)
have reached a level of maturity and commercial software implementations exist [47]. For a
recent review of advances and challenges the reader is referred to [19]. In this article optimi-
zation problems which have differential equations and/or additional optimization problems
embedded are considered. The former are termed dynamic optimization problems and the
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latter bilevel programs. The focus is on the combination of these to consider bilevel dynamic
optimization problems, in particular in the presence of nonconvexity.

This article considers deterministic global optimization methods, which guarantee obtain-
ing a global solution by furnishing a certificate of optimality. Establishing such a certificate
has several advantages. Besides to often obtaining much better solutions than through local
methods, the optimality guarantees allow the invalidity of models to be established during
parameter estimation [46]. An additional motivation for bilevel and semi-infinite programs
is that the global solution of the lower-level program is required just to establish feasibility of
a given point. In Sect. 4 global optimality is required to design a safe operation with a failure
mode.

In Sect. 2 a recent algorithm [34] for the global solution of bilevel programs with non-
convex lower-level programs is summarized. Section 3 gives an overview of several recent
contributions to the global solution of dynamic optimization problems. Then in Sect. 4 sce-
nario-integrated dynamic optimization is discussed. Formulations by Abel and Marquardt
[1] are analyzed and extended, and conceptual solution methods are proposed. Note that in
the scenario-integrated formulations a global solution of the lower-level program is required,
for this gives the constraints for the overall program and a local solution would result in a
relaxation of the feasible set, or potentially unsafe operation.

2 Bilevel nonlinear programs

Bilevel programs are programs where an upper-level program (or outer program, super-
script u) is constrained by an embedded lower-level program (or inner program, superscript
1). In this section regular nonlinear bilevel programs (without dynamics embedded) with
(Euclidean) compact host sets Pu, Pl and continuous functions are considered:

f u,∗ = min
pu ,pl

f u(pu,pl)

s.t. gu(pu,pl) ≤ 0

pl ∈ arg min
pm

f l(pu,pm)

(1)
s.t. gl,1(pu,pm) ≤ 0

gl,2(pm) ≤ 0

pu ∈ Pu ⊂ R
nu , pl ,pm ∈ Pl ⊂ R

nl .

Unlike the majority of contributions in the literature, here neither uniqueness nor convexity
are assumed. Typically in bilevel programs the symbols x and y are used for the optimization
variables. Here the symbols p are chosen in accordance with the usual notation in dynamic
optimization problems where x stand for the state variables and p for the parameters. Note
the use of dummy variables for the lower level problem (pm instead of pl ).

Nonuniqueness of the minimum of the upper-level program can be handled similarly
to single-level nonlinear programs (NLPs), but nonuniqueness in the lower-level program
requires special attention. In the case that for a given pu the lower-level program has multiple
minima pl , we allow the optimizer of the upper-level program to choose among them. This
is the so-called co-operative (or optimistic) formulation [13]. An alternative is to use the
so-called pessimistic formulation [34].

Similarly, nonconvexity in the upper-level program poses no essential difficulty com-
pared to NLPs. On the other hand, nonconvexity in the lower-level program is a major
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complication. Just to establish the feasibility of a given pair (p̄u, p̄l) the only known way is
to solve the lower-level program to global optimality. Since in general only ε-optimality can
be guaranteed finitely, one has to resort to ε-feasibility; for a formal definition see Sect. 2.1.

To the authors’ best knowledge, the first valid algorithms to solve bilevel programs to
guaranteed global optimality when nonconvexity is present in the lower-level program were
proposed in [33,34]. Here an overview of the simplest variant is given which does not consider
branching nor tightening of the lower-bounding problem by the KKT necessary conditions.
The algorithm is similar to the procedure by Blankenship and Falk [10] for semi-infinite
programs (SIPs). By adding constraints (cuts) the lower-bounding problems become succes-
sively tighter, until the upper-bounding problem is guaranteed to generate a feasible point. In
SIPs this is relatively easy, but in general bilevel programs significantly more difficult. The
proposal in [33,34] relies on the generation of parametric upper bounds to the lower-level
problem.

Among the vast literature on bilevel programs, see e.g., [4,13,42,53] for reviews, the
most relevant contributions are briefly mentioned here. Bard [3] considered a simpler for-
mulation without upper-level constraints and with a unique minimum for the lower-level
problem. Floudas and coworkers [18,21] applied concepts of global optimization to bilevel
programs with convex lower-level programs. Pistikopoulos and coworkers [15,41] consid-
ered bilevel programs with linear and quadratic functions and used a parametric optimization
approach. Tuy et al. [52] proposed an algorithm for bilevel programs satisfying a monotonicity
assumption. Algorithms that guarantee convergence to the global solution or stationary points
have been proposed for related programs under nonconvexity, such as min–max programs
[16,57], semi-infinite programs (SIP) [9,10,17,35], and generalized semi-infinite programs
(GSIP) [28].

2.1 Definitions

Definition 1 (Lower-Level Program) For a fixed pu we denote:

min
pl

f l(pu,pl)

s.t. gl,1(pu,pl) ≤ 0
(2)

gl,2(pl) ≤ 0

pl ∈ Pl ,

the lower-level program.

Definition 2 (Parametric Optimal Solution Function) The parametric optimal solution value
of (2) as a function of the upper-level variables is denoted f̄ l(pu). For infeasible lower-level
programs the convention f̄ l(pu) = +∞ is used.

Note that depending on the value of pu , the set of optimal points of the lower-level problem
can be empty, a singleton, a finite set or even an uncountable set.

In NLPs it is common practice to consider a point feasible if it satisfies the equality con-
straints within a prescribed tolerance. Similarly, for bilevel programs (1) with nonconvex
lower-level programs it is only plausible to expect a finitely terminating algorithm to provide
a guarantee for ε-feasibility [33]:
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Definition 3 (ε-Feasibility) A pair (p̄u, p̄l) is called ε-feasible if it satisfies the constraints
of the lower- and upper-level programs and ε f l -optimality in the lower-level program, i.e.:

gu(p̄u, p̄l) ≤ 0

gl,1(p̄u, p̄l) ≤ 0

gl,2(p̄l) ≤ 0

f l(p̄u, p̄l) ≤ f̄ l(p̄u)+ ε f l .

An ε-feasible point is called ε-optimal if it satisfies ε f u -optimality in the upper-level program,
i.e.:

f u(p̄u, p̄l) ≤ f u,∗ + ε f u .

Definition 4 (pu Feasible in the Upper-Level Program) The subset of Pu which is admissible
in the upper-level program is denoted:

Pu
upper = {pu ∈ Pu : ∃ p̄l ∈ Pl : gu(pu, p̄l) ≤ 0}.

Definition 5 (pu Feasible in the Lower-Level Program) The subset of Pu which is admissible
in the lower-level program is denoted:

Pu
lower = {pu ∈ Pu : ∃ p̄l ∈ Pl : gl,1(pu, p̄l) ≤ 0, gl,2(p̄l) ≤ 0}.

2.2 Algorithmic design and overview

The algorithm described here employs the following reformulation

min
pu ,pl

f u(pu,pl)

s.t. gu(pu,pl) ≤ 0

gl,1(pu,pl) ≤ 0
(3)

gl,2(pl) ≤ 0

pu ∈ Pu ⇒ f l(pu,pl) ≤ f̄ l(pu)

pu ∈ Pu, pl ∈ Pl .

This reformulation has also been used by Tuy et al. [50,51] in an algorithm for linear bilevel
problems. This reformulation has the advantage that while the lower-level program may
have infinitely many minima, it always has a unique optimal objective value. Thus, by using
this reformulation multiple global minima in the lower-level program pose no essential
complication.

The basic design principle for the algorithm described is to formulate a series of sin-
gle-level global optimization subproblems. While these subproblems are expensive to solve,
there exist deterministic global optimization algorithms to solve them. In general it is not a
good practice to embed a computationally expensive procedure inside another one. However,
as discussed previously, just to establish the feasibility of a given pair (p̄u, p̄l) requires the
solution of the lower-level program to global optimality and, therefore, a nested approach
seems inevitable. Since with current computational capabilities it is only practical to solve
small-scale bilevel programs with nonconvex lower-level programs, the nested approach
does not seem like a major drawback. On the contrary, it has the advantage that state-of-the
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art global solvers for single-level NLPs can be employed. Moreover, it seems almost nat-
ural to employ a nested algorithm to solve a nested problem. Finally, this approach can be
extended relatively easily to more difficult formulations, such as with dynamics embedded
or mixed-integer formulations.

The main steps in the algorithm presented are (i) the lower-bounding problem which fur-
nishes a lower bound to the optimal objective value as well as a candidate point p̄u ; (ii) the
solution of the lower-level program at p̄u ; (iii) the generation of a Slater point pl,k and a box
Pu,k ⊂ Pu ; and (iv) probing the feasibility of p̄u . These steps are described and followed by
a formal statement of the algorithm.

2.3 Lower-bounding procedure

To obtain a lower bound the feasible set needs to be relaxed. Similar to single-level optimiza-
tion the constraints of the upper-level program could be relaxed by one of many well-known
convex or affine relaxation techniques, see e.g., [47]. In contrast, a different approach is
needed for the special constraint “pl is a global minimum of the lower-level program”.
A possibility is the constraint “pl is feasible in the lower-level program” [53], however this
does not suffice for convergence of the lower bound and here parametric upper bounds for the
optimal solution function of the lower-level program for specific subsets of Pu are included
to achieve convergence. It would be extremely computationally expensive to obtain the exact
solution of the lower-level problem for the entire set Pu . Instead, here a finite collection of
pairs (Pu,k,pl,k) is obtained, composed of sets Pu,k ⊂ Pu and points pl,k ∈ Pl , such that
for each pl,k the lower-level constraints are satisfied for all p̄u ∈ Pu,k , i.e.,

gl,1(p̄u,pl,k) ≤ 0, ∀p̄u ∈ Pu,k

gl,2(pl,k) ≤ 0 (4)

From these constraints and the definition of the optimal solution function f̄ l it follows

f̄ l(p̄u) ≤ f l(p̄u,pl,k), ∀p̄u ∈ Pu,k . (5)

Consider now a finite index set K and any point (p̄u, p̄l) ∈ Pu × Pl which is feasible in (3).
By the feasibility of this point, it directly follows

gu(p̄u, p̄l) ≤ 0, gl,1(p̄u, p̄l) ≤ 0, gl,2(p̄l) ≤ 0. (6)

Furthermore, since p̄l is a global minimum of the lower-level program for p̄u we have
f l(p̄u, p̄l) = f̄ l(p̄u). Together with (5) it follows

f l(p̄u, p̄l) = f̄ l(p̄u) ≤ f l(p̄u,pl,k), ∀k ∈ K : p̄u ∈ Pu,k . (7)

By (6) and (7) the point (p̄u, p̄l) is feasible in the program

min
pu ,pl

f u(pu,pl)

s.t. gu(pu,pl) ≤ 0

gl,1(pu,pl) ≤ 0

gl,2(pl) ≤ 0 (8)

pu ∈ Pu,k ⇒ f l(pu,pl) ≤ f l(pu,pl,k), ∀k ∈ K

pu ∈ Pu, pl ∈ Pl .
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In other words (8) provides a relaxation of (3). Therefore, a valid lower bound can be obtained
from the global solution value of (8). Note that the use of logical constraints is well estab-
lished, see, e.g., [7,38,55]. A simple implementation is using the big-M method and more
elaborate formulations such as the convex hull formulation are possible, see e.g., [20]. It is
also possible to avoid the logical constraints by a specialized branching in the upper-level
variables [34].

In the remainder of this subsection a three-step procedure is summarized to obtain points
pl,k and sets Pu,k that satisfy (4). The first step is to fix the variables pu to the values of the
optimal solution p̄u obtained by the lower-bounding problem (8) and to solve the lower-level
problem globally

f l,∗ = min
pl

f l(p̄u,pl)

s.t. gl,1(p̄u,pl) ≤ 0 (9)

gl,2(pl) ≤ 0

pl ∈ Pl .

The results of this step are also used for the upper-bounding procedure, see Sect. 2.4. Feasi-
bility of (9) is guaranteed by the solution of (8). Similar to the solution of (8), the final lower
bound from the global solver needs to be used for f l,∗.

The second step is to pick ε f l
2
> 0 and to find a point pl,k such that gl,1(p̄u,pl,k) <

0, gl,2(pl,k) ≤ 0 and f l(p̄u,pl,k) ≤ f l,∗ + ε f l
2
. A simple way to do so is to solve the

optimization problem

min
pl ,u

u

s.t. f l(p̄u,pl) ≤ f l,∗ + ε f l
2

gl,1
i (p̄u,pl) ≤ u, i = 1, . . . , ngl,1 (10)

gl,2(pl) ≤ 0

pl ∈ Pl , u ≤ 0.

This problem is feasible by the solution of (9). Provided that condition (12) is satisfied (see
the section describing the convergence of the algorithm, Sect. 2.5.1), the optimal solution
value of (10) is negative and pl,k satisfies the required properties. To accelerate convergence,
the solution of the lower-level program (9) can be used as an initial guess. Finite convergence
of the algorithm is guaranteed for sufficiently small ε f l

2
, see Sect. 2.5.1. If there are multiple

solutions to (10), the path followed by the algorithm in finding an optimal solution of the
bilevel program may change depending on which solution of (10) is obtained.

The third step is to identify a set Pu,k , that satisfies (4) and contains p̄u in its interior. In
the case that p̄u is a boundary point of Pu , instead part of the boundary of Pu,k coincides
with part of the boundary of Pu . A very simple possibility to do this is used by Oluwole
et al. [39] in the context of kinetic model reduction. Essentially, successively smaller boxes
Pu,k are guessed until (4) can be verified via an overestimation through interval analysis.

2.4 Upper-bounding procedure

Currently no method exists that provides valid, convergent upper bounds for bilevel programs
with nonconvex lower-level programs without the global solution of the lower-level problem.
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Recent publications on (G)SIPs enable calculation of upper bounds without solving a global
optimization problem by overestimating the lower-level program via interval analysis [8,9,
28] or convex/affine relaxations [17,35]. This is possible because for (G)SIPs a relaxation of
the lower-level program gives a restriction of the overall problem [35]. This relation is not
true in general for the bilevel problem (1) because a relaxation of the lower-level program
changes the feasible set of the overall program [33]. On the other hand, the relation is in
principle true for the reformulation (3). However (3) does not have a Slater point, which
is required for finite convergence of the methods based on a restriction of the lower-level
program (note that allowing ε-feasible points in essence gives such a Slater point). Therefore,
here the upper-bounding procedure is based on probing the feasibility of a candidate solution
p̄u . Given a candidate p̄u , the first step is to solve the nonconvex lower-level program (9)
globally and obtain an optimal solution p̄l and an optimal solution value f l,∗. For an arbitrary
point p̄u , this program may be infeasible, in which case no solution to the bilevel program
exists for pu = p̄u and no upper bound can be obtained. The algorithm only considers candi-
dates generated by the solution of the lower-bounding problem (8) for which the feasibility
of (9) is guaranteed. Recall that (9) is used for the lower-bounding problem as well. Given
the solution f l,∗ an augmented upper-level problem is solved for the fixed p̄u

min
pl

f l(p̄u,pl)

s.t. gu(p̄u,pl) ≤ 0

gl,1(p̄u,pl) ≤ 0

gl,2(pl) ≤ 0 (11)

f l(p̄u,pl) ≤ f l,∗ + ε f l

L B D ≤ f u(p̄u,pl)

pl ∈ Pl ,

allowing an ε f l -violation of lower-level program optimality. This step is performed, because,
due to potential non-uniqueness of the solutions of the lower-level program, a valid upper
bound may be obtained even if the solution to (9) does not satisfy the upper-level constraints.
If (11) is infeasible then no solution exists for pu = p̄u ; otherwise an upper bound is obtained.
The inequality L B D ≤ f u(p̄u,pl) is added to accelerate convergence of (11) and to alleviate
partially the consequences of allowing ε f l -optimality in the lower-level program. Note that
the solution of (11) is only an upper bound in the sense of an ε-feasible point.

2.5 Description of bilevel algorithm

Now a formal statement of the algorithm is given. Input to the algorithm are the optimality
tolerances ε f u (for the upper-level program, defining ε-optimality), ε f l (for the lower-level
program, defining ε-feasibility) and ε f l

2
(for the lower-level program in the calculation

of points pl,k). Finally, the optimality tolerance for the single-level optimizer εN L P

is specified.

Algorithm 1 (Basic Algorithm)

1. (Initialization)
Set L B D = −∞,U B D = +∞, K = ∅, k = 1.
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2. (Lower Bounding)
Solve (8) globally.
IF Feasible THEN

• Set L B D to the optimal objective value (final lower bound).
• Set p̄u equal to the solution point (εN L P -optimal point).

ELSE (Infeasible Problem)

• Terminate.

END
3. (Termination)

IF L B D ≥ U B D − ε f u THEN Terminate.
4. (Lower-Level Program)

Solve NLP (9) globally for pu = p̄u . (Recall that feasibility of this program is guaran-
teed.)
Set f l,∗ equal to the optimal objective value (final lower bound).

5. (Populate Parametric Upper Bounds to Lower-Level Program)
Solve (10). (Recall that feasibility of this program is guaranteed.)

• Set pl,k equal to the solution point.
• Obtain an appropriate set Pu,k .
• Insert k in K .
• Set k = k + 1.

6. (Upper Bounding)
Solve NLP (11) for pu = p̄u with f l,∗ as the upper bound for f l(p̄u,pl) and (if feasible)
obtain an εN L P -optimal point p̄l .
IF Feasible and f u(p̄u, p̄l) < U B D THEN set U B D = f u(p̄u, p̄l) and (pu,∗,pl,∗) =
(p̄u, p̄l).

7. (Loop)
IF L B D ≥ U B D − ε f u THEN Terminate ELSE Goto step 2.

A direct consequence of the validity of the lower and upper-bounding procedures is that
on termination of the algorithm, if U B D = +∞, the instance is infeasible. Otherwise, U B D
is an ε f u -estimate of the optimal solution value (U B D ≤ f u,∗ + ε f u ) and (pu,∗,pl,∗) is an
ε-optimal point (see Definition 3) at which U B D is attained.

2.5.1 Convergence

In this section the convergence of Algorithm 1 is summarized; for a formal convergence
proof the reader is referred to [34]. Note again that no convexity or uniqueness assumptions
are made for either the lower- or upper-level programs.

In addition to compact host sets, an assumption for the lower-level program is used for the
convergence proof: there exists some ε̃ f u > 0 such that for each point p̄u ∈ Pu

upper ∩ Pu
lower

at least one of the following two conditions holds:

1. For any ε f 1
l
> 0 there exists a point p̃l ∈ Pl such that

gl,1(p̄u, p̃l) < 0, gl,2(p̃l) ≤ 0, f l(p̄u, p̃l) ≤ f̄ l(p̄u)+ ε f 1
l
. (12)
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2. The upper-level objective value is ε̃ f u worse than the optimal objective value f u,∗

f u(p̄u, p̄l) > f u,∗ + ε̃ f u , ∀p̄l ∈ Pl : gl,1(p̄u, p̄l)≤0, gl,2(p̄l)≤0, gu(p̄u, p̄l)≤0.

Based on this assumption it is easy to show that the optimal objective function f̄ l : Pu →
R of the lower-level problem is continuous for all pu ∈ Pu

lower ∩ Pu
upper satisfying (12), and as

a consequence either (1) is infeasible or the minimum of (1) exists. Moreover, based on this
assumption it is possible to show that the sets Pu,k have a nonempty interior. By construction
the lower-bounding problem visits only points p̄u ∈ Pu

upper ∩ Pu
lower. Therefore by (12), at

these points it is possible to construct the parametric upper bounds to the optimal solution
value of the lower-level program via the pairs (Pu,k,pl,k). The corresponding logical con-
straints augmented to the lower-bounding problem successively tighten the lower-bounding
problem to the extent that it will either become infeasible or furnish a point inside an existing
Pu,k which is also a ε-optimal point. The tolerances must satisfy

0 < εN L P ≤ min{ε f u/2, ε f l , ε̃ f u }
0 < ε f l

2
< ε f l − εN L P

for finite convergence.

2.6 Illustrative example

Example 2.1 The bilevel program

min
pu ,pl

pu
1 pl

1 + pu
2 (p

l
1)

2 − pu
1 pu

2 pl
3

s.t. 0.1 pl
1 pl

2 − (pu
1 )

2 ≤ 0

pu
2 (p

l
1)

2 ≤ 0

pl ∈ arg min
pm

pu
1 (p

m
1 )

2 + pu
2 pm

2 pm
3

s.t. (pm
1 )

2 − pm
2 pm

3 ≤ 0

(pm
2 )

2 pm
3 − pm

1 pu
1 ≤ 0

−(pm
3 )

2 + 0.1 ≤ 0

pu ∈ [−1, 1]2 pl ,pm ∈ [−1, 1]3

has the best known upper bound −1.
Consider the application of Algorithm 1. At the first iteration for the lower-bounding

problem

min
pu ,pl

pu
1 pl

1 + pu
2 (p

l
1)

2 − pu
1 pu

2 pl
3

s.t. 0.1 pl
1 pl

2 − (pu
1 )

2 ≤ 0

pu
2 (p

l
1)

2 ≤ 0

(pl
1)

2 − pl
2 pl

3 ≤ 0

(pl
2)

2 pl
3 − pl

1 pu
1 ≤ 0

−(pl
3)

2 + 0.1 ≤ 0

pu ∈ [−1, 1]2, pl ∈ [−1, 1]3
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is solved obtaining L B D = −3, p̄u
1 = 1, p̄u

2 = −1, p̄l
1 = −1, p̄l

2 = −1, p̄l
3 = −1. Then

the lower-level program is solved for p̄u = (1,−1)

min
pl

1(pl
1)

2 + (−1)pl
2 pl

3

s.t. (pl
1)

2 − pl
2 pl

3 ≤ 0

(pl
2)

2 pl
3 − pl

1(−1) ≤ 0

−(pl
3)

2 + 0.1 ≤ 0

pl ∈ [−1, 1]3

obtaining p̄l
1 = 0, p̄l

2 = −1, p̄l
3 = −1. The pu-dependent lower-level constraint (gl,1) is

inactive at the optimal solution. Therefore pl,1 = (0,−1,−1) is used for the parametric upper
bounds to the lower-level program. Moreover, the entire host set Pu can be used as Pu,1.
The first iteration is concluded by solving the upper-level problem for fixed p̄u = (1,−1)

min
pl

1pl
1 − 1 (pl

1)
2 − 1 (−1) pl

3

s.t. 0.1 pl
1 pl

2 − (1)2 ≤ 0

(−1)(pl
1)

2 ≤ 0

(pl
1)

2 − pl
2 pl

3 ≤ 0

(pl
2)

2 pl
3 − pl

1(−1) ≤ 0

−(pl
3)

2 + 0.1 ≤ 0

pl ∈ [−1, 1]3

obtaining U B D = −1, p̄u
1 = 1, p̄u

2 = −1, p̄l
1 = 0, p̄l

2 = −1, p̄l
3 = −1.

A second iteration is required to confirm optimality. Now the lower-bounding problem
contains a parametric upper bound to the lower-level problem

min
pu ,pl

pu
1 pl

1 + pu
2 (p

l
1)

2 − pu
1 pu

2 pl
3

s.t. 0.1 pl
1 pl

2 − (pu
1 )

2 ≤ 0

pu
2 (p

l
1)

2 ≤ 0

(pl
1)

2 − pl
2 pl

3 ≤ 0

(pl
2)

2 pl
3 − pl

1 pu
1 ≤ 0

−(pl
3)

2 + 0.1 ≤ 0

pu
1 (p

l
1)

2 + pu
2 pl

2 pl
3 ≤ pu

1 0 + pu
2 (−1)(−1)

pu ∈ [−1, 1]2, pl ∈ [−1, 1]3.

This program gives L B D = −1. Since L B D = U B D the algorithm terminates.

The reader is directed to [34] for extensive numerical testing of the algorithm.

3 Global dynamic optimization

Dynamic optimization refers to mathematical programs where the objective and constraint
functions depend on the solution of a set of differential equations. In this section, dynamic
optimization problems embedding general, nonlinear ODEs are considered:
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min
p∈P

φ0(x(tf ; p),p)+
tf∫

t0

ψ0(x(t; p),p)dt

s.t. φk(x(tf ; p),p)+
tf∫

t0

ψk(x(t; p),p)dt ≤ 0, k = 1, . . . , nc (13)

ẋ(t; p) = f(x(t; p),p), ∀t ∈ (t0, tf ]

x(t0; p) = h(p).

In this formulation, t ∈ [t0, tf ] stands for the independent variable (e.g., time). p ∈ P
denote the continuous time-invariant parameters, with P a nonempty compact convex subset
of R

n p · x are the continuous variables describing the state of the system. Further, let X be a
nonempty compact subset of R

nx such that x(t; p) ∈ X,∀(t,p) ∈ [t0, tf ]× P . The mappings
φk, ψk : X × P → R, k = 0, . . . , nc are assumed to be continuous, but allowed to be
nonconvex. Similarly, f : X × P → R

nx is assumed to be Lipschitz-continuous on X and
continuous on P , while h : P → R

nx is assumed to be continuous on P .
The foregoing assumptions ensure that a solution to the initial value problem (IVP) in

ODEs exists and is unique on [t0, tf ], for every p ∈ P , and that this solution depends contin-
uously on p. A sufficient condition for a solution to exist and be unique on [t0, tf ] is indeed
that f be locally Lipschitz for each p ∈ P and there exists a compact subset X ⊂ R

nx such
that x(t; p) ∈ X,∀(t,p) ∈ [t0, tf ]× P [24, Theorem 3.3]. At this point, one can then invoke
Weierstrass’ theorem to guarantee existence of a minimum to problem (13), provided that
the set of feasible points is nonempty (constraints satisfied for some point.)

For notational simplicity, neither the right-hand side of the differential equations nor the
integrands in the objective and constraints functions in problem (13) depend explicitly on t ,
i.e., the problem is autonomous. It should be noted, however, that all the results presented
later on in this section extend readily to non-autonomous problems.

Problem (13) is effectively an optimization problem on an Euclidean space. Solution meth-
ods for such dynamic optimization problems can be subdivided into two broad categories,
known as simultaneous and sequential. In the simultaneous approach [49], the state variables
are discretized, usually via orthogonal collocation on finite elements. This transforms (13)
into a large-scale NLP problem, with both the parameters p and the collocation coefficients
being the decision variables. In the sequential approach [48], only the parameters p are the
decision variables in a master NLP, and function evaluations are provided to this NLP via
numerical solution of the fully-determined IVP in ODEs given by fixing the parameter values.
Only this latter approach shall be considered subsequently.

Since dynamic optimization problems are often nonconvex and even the simplest prob-
lems may exhibit suboptimal local solutions [31], the development of deterministic global
optimization algorithms that can rigorously guarantee optimal performance has been a topic
of significant interest in recent years. Early attempts have been made to extend the αBB
method [2] for regular NLP problems to dynamic embedded NLPs [12,14,40]. Although
several such algorithms have yielded rigorous global optimization approaches, they are very
computationally expensive for they require second-order sensitivities or adjoints to be cal-
culated; moreover, they require twice-continuous differentiability for the solutions of the
differential equations and do not address the critical issue of non-quasi-monotone differen-
tial equations.

Lin and Stadtherr [29] have proposed a branch-and-reduce algorithm that utilizes interval
analysis and Taylor models for producing bounds enclosing the solutions of ODE systems
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with parametric Taylor models. Significant improvements in the tightness of the state bounds
can be obtained with this approach, but the approach scales exponentially in the number of
parameters. Another drawback of this approach is that it requires that the right-hand sides
of the ODEs be several times continuously differentiable with respect to both the state and
decision variables for construction of the Taylor models, depending on the order of the Taylor
models considered.

Methods based on McCormick’s relaxation technique [32] have also been proposed that
provide convex relaxations for dynamic optimization problems embedding IVPs in nonlin-
ear ODEs [44,45]. McCormick-based relaxations apply to a much wider class of ODEs, for
they only require the right-hand side of the differential equations to be Lipschitz-continu-
ous and factorable. Moreover, these methods were shown to outperform αBB-based relax-
ations both in terms of tightness and computational expense, and allow treatment of non-
quasi-monotone differential equations. Notwithstanding some attractive features offered by
other approaches, we shall restrict the discussion to this latter class of relaxations in the
remainder of this section.

3.1 Preliminaries

This subsection summarizes a number of definitions and results needed in the lower-bounding
procedure for problem (13).

Definition 6 Let P be a nonempty, convex set in R
n p , and f : P → R. The function

u : P → R is said to be a convex underestimator of f on P if (i) u is convex on P , and (ii)
u(p) ≤ f (p) for all p ∈ P . The function o : P → R is said to be a concave overestimator
of f on P if −o is a convex underestimator of − f on P .

Definition 7 Let P ⊂ R
n p be a nonempty convex set, and let u : P → R be convex on P .

The vector ξp∗ ∈ R
n p is said to be a subgradient of u at p∗ ∈ P if

L−
u,p∗(p) := u(p∗)+ ξT

p∗(p − p∗) ≤ u(p), ∀p ∈ P.

That is, L−
u,p∗ is a supporting hyperplane from below of u on P . Analogously, a supporting

hyperplane from above at p∗ of a concave function o on P is denoted L+
o,p∗ .

It is a well-known result that a convex (or a concave) function admits at least one subgra-
dient at any interior point of its domain of definition (see, [6, Chap. III, Theorem 2.2]).

Singer and Barton [43] showed that a convex underestimator for an integral can be con-
structed by integrating a relaxation of the integrand, provided this latter relaxation is convex
for each t ∈ [t0, tf ].

Theorem 1 ([43]) Let P ⊂ R
n p be a nonempty convex set, and let F : P → R be defined

by F(p) := ∫ tf
t0

f (t,p)dt, where f : [t0, tf ] × P → R is a continuous function. Consider
a continuous function u : [t0, tf ] × P → R such that u(t, ·) is a convex underestimator of
f (t, ·) on P for each t ∈ [t0, tf ]. Then, U := ∫ tf

t0
u(t, ·)dt is a convex underestimator of F

on P.

Theorem 1 allows one to derive a convex underestimator for an integral by integrating a
relaxation of the integrand, provided this latter relaxation is convex for each t ∈ [t0, tf ].

Theorem 1 builds upon McCormick’s composition result:
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Theorem 2 ([32]) Let P ⊂ R
n p be a nonempty convex set. Consider the function g ◦ f ,

where f : P → R is continuous and let f (P) ⊂ [a, b]. Suppose that a convex underesti-
mator u f and a concave overestimator o f of f on P are known. Suppose also that a convex
underestimator ug and a concave overestimator og of g on [a, b] are available. Let zmin be
a point at which ug attains its infimum on [a, b], and let zmax be a point at which og attains
its supremum on [a, b]. Then, ug◦ f := ug[mid{u f , o f , zmin}] is a convex underestimator of
g ◦ f on P, and og◦ f := og[mid{u f , o f , zmax}] is a concave overestimator of g ◦ f on P,
where the mid function selects the middle value of three scalars.

In his seminal paper, McCormick [32] also showed how a convex and a concave relaxation
can be obtained for any factorable function from recursive application of his composition
technique. A factorable function therein is defined as a finite recursive composition of binary
sums, binary products and univariate functions with known convex and concave relaxations.
Factorable functions cover a quite general class of functions, the simple subclass being those
defined without recursion such as g1( f1(p))+ g2( f2(p))× g3( f3(p)).

3.2 Branch-and-bound algorithm

The focus is on the use of branch-and-bound algorithms [23] in order to guarantee location
of a global solution of the optimization problem, even when the objective function and/or
constraints are nonconvex. A branch-and-bound algorithm begins by constructing a relaxa-
tion of the original nonconvex problem. This relaxation is solved to generate a lower bound
on the solution of the original problem, and should, in some way, be easier to solve than
the original problem. In the current context, the relaxation is a convex optimization problem
whose objective function underestimates the nonconvex objective function on P and whose
feasible set contains that of the nonconvex problem. This can be achieved by constructing
functions that are convex relaxations of the objective function and constraint functions on P ,
and formulating a convex optimization problem from these relaxed functions. Because every
local minimum of a convex optimization problem is a global minimum, a lower bound can
be found reliably, e.g., upon application of the sequential approach of dynamic optimization.
In general, generating an upper bound on the solution may be a difficult task too, e.g., in
SIP problems [9]. In global dynamic optimization, however, an upper bound is generated
easily from the value of the nonconvex objective function at any feasible point (e.g., a local
minimum found by the sequential approach). If the lower and upper bounds are not within
some ε tolerance, a branching heuristic is used to partition the set P (normally an interval
derived from physical considerations) into two new subproblems (e.g., bisect on one of the
variables). Relaxations are then constructed on these two smaller sets, and lower and upper
bounds are computed for these partitions. If the lower bound on a partition is greater than the
current best upper bound, the global solution cannot exist in that partition and the partition
is excluded from further consideration (fathoming by value dominance). Fathoming is also
performed when the lower bounding problem is infeasible (fathoming by infeasibility). This
process of branching, bounding and fathoming continues until the lower bound on all active
partitions is within ε of the current best upper bound.

The most difficult step in applying the branch-and-bound algorithm to problem (13) lies
in the construction of the lower-bounding problem, a convex optimization problem of the
form:

min
p∈P

uφ0(p) +
tf∫

t0

uψ0(t,p)dt
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s.t. uφk (p) +
tf∫

t0

uψk (t,p)dt ≤ 0, k = 1, . . . , nc, (14)

where uφk , k = 0, . . . , nc, are convex underestimators of φk(x(tf ; ·), ·) on P , and uψk (t, ·)
are pointwise-in-time convex underestimators of ψk(x(t; ·), ·) on P . Similar to factorable
functions, convex relaxations for the terminal and integrand terms of the objective and con-
straint functions in (13) can be obtained upon application of McCormick’s composition tech-
nique recursively. However, for functions with state variables participating, this composition
requires:

1. a convex function ux(t; ·) on P and a concave function ox(t; ·) on P satisfying ux(t; p) ≤
x(t; p) ≤ ox(t; p) for all p ∈ P , pointwise for all t ∈ [t0, tf ];

2. a time-varying enclosure X (t) := [xL(t), xU (t)] for the solutions of the embedded para-
metric ODEs on P , at each t ∈ [t0, tf ].

Techniques that provide such relaxations and bounds are presented subsequently in
Sects. 3.2.1 and 3.2.2.

To illustrate the construction of convex relaxations for terminal terms, consider the simple
composite function ϕ[xi (tf ; ·)] for some i ∈ {1, . . . , nx }. Let uϕ,tf be a convex underestima-
tor of ϕ on Xi (tf ), and denote zmin(tf ) a point at which uϕ,tf attains its infimum on Xi (tf ).
By Theorem 2,

uϕ◦xi (p) := uϕ,tf
[
mid {ux i (tf ; p), ox i (tf ; p), zmin(tf )}

]
is a convex underestimator for ϕ[xi (tf ; ·)] on P . Regarding integral terms, a convex underes-
timator for an integral is obtained by integrating a pointwise-in-time convex underestimator
for the corresponding integrand by Theorem 1. Therefore, a convex relaxation u� for the
simple integral term �(p) := ∫ tf

t0
ϕ[xi (t; p)]dt, i ∈ {1, . . . , nx }, is obtained as

u�(p) :=
tf∫

t0

uϕ,t
[
mid {ux i (t; p), ox i (t; p), zmin(t)}

]
dt

where uϕ,t denotes a convex underestimator of ϕ on Xi (t) at each t ∈ [t0, tf ].
An important property of the lower-bounding approach described herein is that the relax-

ation step and the bounding step of state relaxation are independent from each other. In the
previous example, for instance, neither ux i (t; p) nor ox i (t; p) are required to be in the domain
of uϕ,t —which is Xi (t), by virtue of the composition of uϕ,t with the mid function. To see
this, observe first that the following relations hold true by construction:

zmin(t) ∈ Xi (t), (15)

ux i (t; p) ≤ ox i (t; p), ∀p ∈ P. (16)

Moreover,

ux i (t; p) ≤ xU
i (t), ∀p ∈ P, (17)

for if the converse were true, then
[
ux i (t; p), ox i (t; p)

] ∩ Xi (t) = ∅, which contradicts the
fact that the state trajectory x(t; p) exists and is unique since x(t; p) ∈ [

ux(t; p), ox(t; p)
]

and x(t; p) ∈ X (t) for all p ∈ P . Likewise,

ox i (t; p) ≥ x L
i (t), ∀p ∈ P. (18)

By definition of the mid function and from (16), we have either
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(i) ux i (t; p) ≤ zmin(t) ≤ ox i (t; p), and from (15), mid {ux i (t; p), ox i (t; p), zmin(t)} =
zmin(t) ∈ Xi (t); or

(ii) zmin(t) ≤ ux i (t; p) ≤ ox i (t; p), and from (15) and (17), mid {ux i (t; p), ox i (t; p),
zmin(t)} = ux i (t; p) ∈ Xi (t); or

(iii) ux i (t; p) ≤ ox i (t; p) ≤ zmin(t), and from (15) and (18), mid {ux i (t; p), ox i (t; p),
zmin(t)} = ox i (t; p) ∈ Xi (t).

Overall, mid {ux i (t; p), ox i (t; p), zmin(t)} ∈ Xi (t) for each p ∈ P , regardless of the range
of the convex and concave relaxations ux i (t; p), ox i (t; p).

3.2.1 Convex/concave relaxations for states variables

A method for constructing a convex underestimator ux(t; ·) and a concave overestima-
tor ox(t; ·) of x(t; ·) on P via solution of a set of linear auxiliary ODEs is discussed in
this subsection. It assumes the availability of a time-varying enclosure X (t) for the state
variables.

Theorem 3 ([44]) Let P ⊂ R
n p be a nonempty convex set. Consider the parametric ODEs

ẋ(t; p) = f(x(t; p),p)

for t ∈ [t0, tf ] and p ∈ P, with the initial conditions x(t0; p) = h(p). Suppose that its
solution x(t; p) is bounded by the set X (t) ⊂ R

nx of time-varying state bounds, at each
t ∈ [t0, tf ]. For each i = 1, . . . , nx , let u f i : X (t)× P → R and o f i : X (t)× P → R be a
convex underestimator and a concave overestimator for fi on X (t)× P, respectively. Let also
uhi : P → R and ohi : P → R be a convex underestimator and a concave overestimator
for hi on P, respectively. Consider the parametric differential equations

u̇xi (t; p) = inf
z

{L−
u f i ,(x

∗(t),p∗)(z,p) : ux(t; p) ≤ z ≤ ox(t; p), zi = ux i (t; p)} (19)

ȯxi (t; p) = sup
z

{L+
o f i ,(x

∗(t),p∗)(z,p) : ux(t; p) ≤ z ≤ ox(t; p), zi = ox i (t; p)} (20)

for each i = 1, . . . , nx and t ∈ [t0, tf ], with initial conditions

ux i (t0; p) = L−
uh i ,p∗(p) (21)

ox i (t0; p) = L+
oh i ,p∗(p) (22)

for some reference trajectory (x∗(t),p∗) in the interior of X (t) × P. Then, ux(t; ·) and
ox(t; ·) are respectively a convex underestimator and a concave overestimator of x(t; ·) on
P, for each t ∈ [t0, tf ].

The most difficult aspect of obtaining state relaxations is constructing the right-hand sides
of (19, 20) as well as of (21, 22). A way of obtaining the convex/concave relaxations uf , of ,uh
and oh is by applying McCormick’s composition technique recursively [32]. Yet, any other
relaxation procedure can be used provided it possesses the property that as the parameter set
decreases, the relaxations become closer to the original function with monotonic pointwise
convergence.

In Theorem 3, a reference trajectory (x∗(t),p∗) must be chosen for constructing the aux-
iliary differential system. Observe that any choice of this reference trajectory in the interior
of X (t)× P gives a valid convex underestimator ux(t; ·) and a valid concave overestimator
ox(t; ·) of x(t; ·) on P , at each t ∈ [t0, tf ]. In particular, the trajectories x∗(t) need not be the
solution of the ODEs for p∗ or any other values of the parameters. Moreover, if either of the
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convex/concave relaxations uf , of ,uh or oh admits several subgradients at a reference point,
any of the corresponding hyperplanes supporting that relaxation can be considered.

3.2.2 Implied state bounds

The problem of estimating the image of the parameter set P under the solution of the ODEs is
addressed in this subsection. In general, obtaining the exact bounds for nonlinear ODEs (i.e.,
the tightest possible implied state bounds) is itself a nonconvex optimal control problem. Nev-
ertheless, a number of techniques exist that provide rigorous pointwise-in-time enclosures
of the image set.

Interval methods for ODEs provide a natural approach for computing the desired enclo-
sures at a finite number of times t ∈ [t0, tf ]. For example, the popular VNODE package
[37] can be used by treating the parameters as additional state variables with time derivatives
equal to zero. Recently, Lin and Stadtherr [30] have also developed a validated solver for
parametric ODEs.

Another way of getting state bounds is via the theory of differential inequalities [22,54].
The benefit of using differential inequalities over the aforementioned validated ODE meth-
ods lies in the fact that state bounds can be obtained at any time instant, as the solution of
an auxiliary set of ODEs. It is well known, however, that the application of standard dif-
ferential inequalities to non-quasi-monotone ODEs leads to bounds that explode on short
time scales. In response to this, Singer and Barton [44] have developed new differential
inequality results that incorporate a priori knowledge concerning constraints and solution
invariants in the computation of state bounds. Assuming that a set of natural bounds, X (t,p),
is known a priori for a system, the following theorem derives tighter state bounds for systems
of non-quasi-monotone ODEs.

Theorem 4 ([44]) Let P ⊂ R
n p be a nonempty convex set. Consider the parametric ODEs

ẋ(t; p) = f(x(t; p),p)

for t ∈ [t0, tf ] and p ∈ P, with the initial conditions x(t0) = h(p). For a given p ∈ P,
suppose that the state variables x(t; p) lie in the set X (t,p) ⊂ R

nx , known independently
from the solution of the ODEs. Furthermore, let X (t) be defined pointwise in time by

X (t) := [x̄L(t), x̄U (t)] such that x̄ L
i (t) := inf

q∈P
X i (t,q),

x̄U
i (t) := sup

q∈P
X i (t,q), ∀i = 1, . . . , nx .

Then, any trajectories xL(t) and xU (t) satisfying the differential inequalities

ẋ L
i (t) ≤ inf

z,q
{ fi (z,q) : z ∈ X (t) ∩ X (t), zi = x L

i (t),q ∈ P} (23)

ẋU
i (t) ≥ sup

z,q
{ fi (z,q) : z ∈ X (t) ∩ X (t), zi = xU

i (t),q ∈ P} (24)

for each i = 1, . . . , nx and t ∈ [t0, tf ], along with the initial conditions

xL(t0) ≤ h(p) ≤ xU (t0), ∀p ∈ P,

are such that

xL(t) ≤ x(t; p) ≤ xU (t), ∀p ∈ P,

for each t ∈ [t0, tf ].
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The most difficult aspect of obtaining implied state bounds appears to be bounding the
solutions of the optimization problems defining the right-hand sides of (23, 24). Solving
these optimization problems at each integration step in a numerical integration would be a
prohibitively expensive task. Instead, their solutions can be estimated by interval arithmetic
pointwise in time, e.g., via natural interval extension [36]. Given the inclusion monoto-
nicity property of natural interval extensions, theoretical guarantees can be given that the
state bounds approach the corresponding state trajectory when the parameter set approaches
degeneracy. This property is indeed necessary to guarantee finite ε-convergence of the
branch-and-bound algorithm, as explained in the following subsection.

3.2.3 Algorithm summary and convergence

A formal statement of the branch-and-bound algorithm is given in this subsection. Input to
the algorithm is the optimality tolerance εB B > 0.

Algorithm 2 (Branch-and-Bound Algorithm)

1. (Initialization)
Set U B D = +∞,S = {P}.

2. (Lower Bounding)
Select and remove N ∈ S.
Solve (14) for p ∈ N and (if feasible) set L B(N ) to the optimal objective value.
IF Infeasible or L B(N ) ≥ U B D − εB B THEN (Fathoming)

Goto step 5.
END

3. (Upper Bounding)
Solve (13) (locally) for p ∈ N and (if feasible) set U B(N ) to the optimal objective value
and p(N ) to a local optimal point.
IF Feasible and U B(N ) < U B D THEN Set U B D = U B(N ) and p∗ = p(N ).

4. (Branching)
IF L B(N ) < U B D − εB B THEN

Bisect the set N into two nonempty subsets N L and N R .
Insert N L and N R in S.

END
5. (Loop)

IF S = ∅ THEN Terminate ELSE Goto step 2.

If U B D = +∞ upon termination of the algorithm, the instance is infeasible. Otherwise,
U B D is an εB B estimate of the optimal solution value and p∗ is a feasible point at which
U B D is attained.

A sufficient condition for εB B -convergence to the global solution in finite time of the
branch-and-bound Algorithm 2 is that (i) the selection operation be bound improving, and
(ii) the bounding operation be consistent [23, Theorem IV.3]. A bound improving selection
operation refers to the property that, after a finite number of steps, at least one partition ele-
ment where the actual lower bound is attained is selected for further partitioning. Provided
that partitions on which the global solution value is attained are retained and exhaustive
search is utilized (e.g., by using bisection for branching), and by the finite dimensionality
of the decision variable space, Algorithm 2 can be shown to satisfy this condition. On the
other hand, a consistent bounding operation refers to the property that, at every step, any
unfathomed partition can be further refined and, in any infinite sequence of nested partitions,
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the lower bound converges to the upper bound. This condition can be shown to be satisfied
by Algorithm 2 upon utilizing Theorems 3 and 4 together with Theorem 2 for relaxation
of factorable functions. In particular, generating state bounds via Theorem 4 guarantees that
X (t) become degenerate as P itself becomes degenerate. Moreover, the convex/concave state
relaxations generated via Theorem 3 can also be shown to converge to the original function
as P becomes degenerate when the convex/concave relaxations uf , of ,uh and oh themselves
possess a consistent bounding operation (which is the case when McCormick relaxations
are considered). The reader is referred to [45] for a formal convergence proof and related
discussions.

3.3 Extension to optimal control and multistage problems

The results presented earlier in this section can be readily extended to address problems
wherein the objective and constraint functions include a finite number of point or integral
terms on a fixed partition of the time domain. Extensions also exist that encompass solution
of problems embedding multistage ODEs, possibly with varying transition times, including
varying initial and/or terminal times [25]. These extensions are illustrated later on in this sub-
section through the case study of a simple two-stage dynamic system with fixed intermediate
time and varying terminal time.

Finally, problems containing function valued decision variables u(t), such as in optimal
control, can be converted in the formulation given in (13) upon application of control vector
parameterization (CVP) techniques [11,48]. CVP approximates u(t) with parametric func-
tions ω(t,p), such as piecewise constant or piecewise linear functions. As such, it yields
a suboptimal solution to the original control problem, although it is well known that even
coarse parameterizations usually give solution values close to the optimal solution value.
Often, optimal control problems also contain inequality path constraints of the form

η(x(t),u(t)) ≤ 0,

which must be satisfied at every t ∈ [t0, tf ]. Two popular approximate methods for handling
path constraints are [48]: (i) discretization as interior-point constraints,

η(x(tq),ω(tq ,p)) ≤ 0,

where tq ∈ [t0, tf ] are a finite set of points; and (ii) transcription as an integral constraint,

∫ tf

t0
max{0, η(x(t),ω(t,p))}2dt = 0. (25)

Observe that the isoperimetric constraint (25) is not regular because the gradient of that inte-
gral is equal to zero whenever this constraint is satisfied; in response to this, (25) is usually
relaxed as an inequality constraint,

∫ tf

t0
max{0, η(x(t),ω(t,p))}2dt ≤ ε,

where ε is a small nonnegative constant. Using either or both of the foregoing approaches
for dealing with path constraints in conjunction with CVP, path constrained optimal control
problems thus conform to the problem formulation given in (13).
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3.3.1 Illustrative example

Consider the two-stage dynamic system

ẋ(t) = −0.1 [x(t)− u(t)]2 , ∀t ∈ (0, 1 ]

ẋ(t) = x(t), ∀t ∈ (1, T ]

with initial condition x(0) = u(0)2 − 0.5 and state continuity at time t = 1. The objective
here is to maximize the value of x(T ) by varying the control u(t) ∈ [−3, 2], 0 ≤ t ≤ 1 as
well as the terminal time T ∈ [1, 2].

For simplicity, the control is parameterized by a single constant parameter, u(t) ≡ ω, 0 ≤
t ≤ 1. Moreover, the dynamics of the system in the second stage are scaled by (T − 1), so
that the differential system in each stage is now defined on a fixed partition interior to the
time domain [0,2]. With these reformulations, the following (nonconvex) multistage dynamic
optimization problem is obtained:

min
ω,T

φ0[x(2)] := −x(2) (26)

s.t. ẋ(τ ) = −0.1 [x(τ )− ω]2 , ∀τ ∈ (0, 1 ] (27)

ẋ(τ ) = [T − 1] x(τ ), ∀τ ∈ (1, 2 ] (28)

x(0) = ω2 − 0.5 (29)

ω ∈ [−3, 2], T ∈ [1, 2]. (30)

In order to solve this problem using branch-and-bound, one needs to construct lower-
bounding problems on arbitrary subpartitions [ωL , ωU ]×[T L , T U ] of the parameter domain
P := [−3, 2] × [1, 2]. Time-varying enclosures X (τ ) = [x L(τ ), xU (τ )] are easily obtained
from Theorem 4 as the solutions of the following auxiliary, two-stage ODE system:

ẋ L(τ ) = −0.1 max
{
(x L(τ )− ωL)2, (x L (τ )− ωU )2

}
ẋU (τ ) = −0.1 mid

{
xU (τ )− ωU , xU (τ )− ωL , 0

}2

}
∀τ ∈ (0, 1 ] (31)

ẋ L(τ ) = min
{[T L − 1]x L(τ ), [T U − 1]x L(τ ), [T L − 1]xU (τ ),

ẋU (τ ) = max
{[T L − 1]x L(τ ), [T U − 1]x L(τ ), [T L − 1]xU (τ ),

[T U − 1]xU (τ )
}

[T U − 1]xU (τ )
}
}

∀τ ∈ (1, 2] (32)

x L(0) = mid
{
ωL , ωU , 0

}2 − 0.5

xU (0) = max
{
(ωL)2, (ωU )2

}
− 0.5. (33)

Next, using McCormick’s relaxation technique to obtain convex/concave relaxations for the
right-hand side of the ODEs and their initial conditions, state relaxations ux (τ ), ox (τ ) are
obtained from Theorem 3 as the solutions of the auxiliary, two-stage ODE system:

u̇x (τ ) = −0.1(ux (τ )− ω)(xU (τ )+ x L(τ )− ωU − ωL)

+ 0.1(xU (τ )− ωL)(x L (τ )− ωU )

ȯx (τ ) = −0.2(ox (τ )− ω)(x�(τ )− ω�)− 0.1(x�(τ )− ω�)2

⎫⎬
⎭ ∀τ ∈ (0, 1 ] (34)
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u̇x (τ ) = max
{[T − T L ]x L(τ )+ [T L − 1] mid{ux (τ ), ox (τ ), zL

u (τ )},{[T − T U ]xU (τ )+ [T U − 1] mid{ux (τ ), ox (τ ), zU
u (τ )}

}
ȯx (τ ) = min

{[T − T L ]xU (τ )+ [T L − 1] mid{ux (τ ), ox (τ ), zL
o (τ )},{[T − T U ]x L(τ )+ [T U − 1] mid{ux (τ ), ox (τ ), zU
o (τ )}

}

⎫⎪⎪⎬
⎪⎪⎭

∀τ ∈ (1, 2 ]

(35)

ux (0) = 2ωω� + (ω�)2 − 0.5

ox (0) = ω(ωL + ωU )− ωLωU − 0.5, (36)

for any reference trajectory (x�(τ ), ω�, T �) ∈ X (τ )× [ωL , ωU ] × [T L , T U ], and

zL
u (τ ) =

{
x L(τ ) if T L ≥ 1
xU (τ ) otherwise,

zU
u (τ ) =

{
x L(τ ) if T U ≥ 1
xU (τ ) otherwise,

zL
o (τ ) =

{
xU (τ ) if T L ≥ 1
x L(τ ) otherwise,

zU
o (τ ) =

{
xU (τ ) if T U ≥ 1
x L(τ ) otherwise.

Finally, a convex underestimator for the objective function φ0[x(2)] is easily obtained as:

uφ0◦x = − mid{ux (2), ox (2), xU (2)}.
A representation of the nonconvex objective function and its convex underestimator is shown
in Fig. 1. Here, the parameters are allowed to vary in the entire P set, and the reference tra-

jectory is chosen as (x�(τ ), ω�, T �) = (
x L (τ )+xU (τ )

2 , ω
L+ωU

2 , T L+T U

2 ).
The results obtained on application of the branch-and-bound algorithm presented in Sect.

3.2.3 are summarized in Table 1. At each node N , a lower bound, L B(N ), and (if needed) an
upper bound, U B(N ), are generated as:

U B(N ) := minω,T −x(2)
s.t. Eqs. (27–29)

(ω, T ) ∈ N ,

L B(N ) := minω,T − mid{ux (2), ox (2), xU (2)}
s.t. Eqs. (31–36)

(ω, T ) ∈ N .

These dynamic optimization subproblems are solved by using the sequential approach. At
each level, the node N having the lowest lower-bounding value L B(N ) is selected best-bound
search heuristic. Branching via bisection on one the variables is employed, with variable
selection based on the least-reduced axis rule. No domain reduction heuristic is used, and the
branch-and-bound tolerance is set to εB B = 10−3. The algorithm requires seven iterations
for termination, and the global solution φ∗ = −8.9821 is found at node 3.

Fig. 1 Nonconvex objective
function and convex
underestimator versus parameter
ω ∈ [−3, 2] and terminal time
T ∈ [1, 2]

Nonconvex objective Convex underestimator
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4 Scenario-integrated dynamic optimization

This section discusses how to extend and combine the bilevel and dynamic optimization
algorithms presented in the previous sections to scenario-integrated dynamic optimization.
The goal of the formulations in this section is to account for uncertainty in the operation
of dynamic systems. In particular, events, outside of the control of the optimizer, can occur
that change the dynamic behavior or the constraints of the system and can lead to loss of
profit or to catastrophic failures. For instance, external economic factors, such as drastic price
changes may render the operation suboptimal. A more extreme case is at the operation of
a chemical plant where external factors such as the sudden occurrence of rain may lead to
plant failure. The main objective is to optimize the nominal operation (i.e., the operation
without the occurrence of the external events), but in addition, the scenario operation (i.e.,
the operation once the event has set in), must be feasible and/or optimal. A major complica-
tion is that the time of event occurrence is in general unknown and this gives semi-infinite
formulations, as in robust optimization [5]. To ensure feasibility, the global solution of the
lower-level programs is mandated. An additional complication is that the scenario operation
may be governed by objectives different from the nominal operation.

The formulations proposed here are inspired by Abel and Marquardt [1]. The notation
is changed for consistency with the previous sections. The superscripts u and l denote the
upper and lower-level programs respectively. The superscripts c, s and f denote respectively
intermediate, transition and final time. The dependence of the state variables x on the optimi-
zation parameters is omitted to simplify the notation. Time derivatives of the state variables
x are denoted with ẋ.

It is assumed that the objective depends only on the state variables at the final time. Integral
objective functions can be treated as described in Sect. 3.2 and are omitted for simplicity.
Furthermore, path constraints are excluded to keep notation to a minimum. As described in
Sect. 3 path constraints can be approximated as interior-point constraints.

Throughout this section a single scenario is considered. The extension to multiple fail-
ure scenarios would not add conceptual difficulty, but would significantly complicate the
notation. On the other hand, the extension to nested scenarios is a major complication, both
conceptually and computationally.

It is assumed that the failure can occur at any point during the nominal operation, irre-
spectively of the values of the state variables, desicion variables, or time itself. Depending
on the application this may not be an appropriate assumption; for instance if the source of
failure are weather phenomena, it is known that they can occur only at certain periods of the
year. This assumption is however made because the extension to state-variable dependent
failure time requires significant additional considerations.

For problems with variable final time, the reformulation discussed in Sect. 3.3 is per-
formed. This scaling of the dynamics makes notation simpler and the dynamic optimization
problems more tractable. Moreover, it transforms GSIP into SIP, compare also [27]. Without
loss of generality the initial time is assumed to be zero and the time is scaled to [0,1]. The
explicit time-dependence of the right-hand sides and initial conditions on time is omitted for
simplicity.

An inherent advantage of the algorithms presented in the previous sections is their modular
nature, since this allows their relatively simple combination. Recall that the bilevel algorithm
summarized in Sect. 2 formulates a series of single-level optimization problems which can
again be solved using black-boxes. Recall also that in the algorithms for global dynamic
optimization described in Sect. 3 the sequential approach is used for solving the optimization
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problem only in the parameters, while treating the functions as black boxes which return
their values, gradients and convex relaxations.

4.1 Scenario mode without operational degrees of freedom

In this subsection the formulation (SIOP6) by Abel and Marquardt [1] is revisited and a solu-
tion method is proposed based on the assumptions made. This formulation considers the case
that in the failure mode no operational degrees of freedom are available, due to constraints,
or a predetermined shutdown policy. Here, it is assumed that the time horizon of the scenario
operation is known a priori, or its end time is uniquely determined by a state event, which
for simplicity is not included in the formulations. Depending on the application, this may
be a significant restriction, but the generalization requires considerations which go beyond
the scope of this article. In the car example by Abel and Marquardt the end time is uniquely
determined by the car coming to a halt, i.e., by vl(t l = t l, f ) = 0. It is also assumed that an
upper bound for tu, f is known and that the parameters pu are bounded.

After a change of notation and scaling the following upper-level program is obtained:

f u,∗ = min
pu ,tu, f

f u(xu(τ u = 1),pu)

s.t. gu, f (xu(τ u = 1),pu) ≤ 0

xu(τ u = 0) = xu
0(p

u)
(37)

ẋu(τ u) = tu, f gu,c(xu(τ u),pu), ∀τ u ∈ (0, 1 ]

v(tu, f ,pu) ≤ 0

pu ∈ Pu ⊂ R
nu , tu, f ≥ 0.

The upper-level variables are the parameters of the nominal operation pu and the final time
of the nominal operation (without failure). For a given choice of upper-level variables, the
following lower-level program gives the maximum constraint violation during scenario oper-
ation:

v(tu, f ,pu) = max
τ u,s

max
k

gl, f
k (xl(τ l = 1),pu)

s.t. xl(τ l = 0) = xl
0(x

u(τ u = τ u,s),pu) (38)

ẋl(τ l) = (t l, f − tu, f τ u,s) gl,c(xl(τ l),pu), ∀τ l ∈ (0, 1 ]

τ u,s ∈ [0, 1].
The lower-level program (38) is box-constrained, always feasible (under the assumptions on
existence of solution to the ODE described in Sect. 3) and its feasible region does not depend
on the upper-level variables. The overall program can be therefore classified as a dynamic
extension to a regular SIP. This in turn is a special case of a dynamic bilevel optimization
problem. Without the scaling of the dynamics the feasible set of the lower-level program
would be the dynamic analog of a GSIP, compare also [27]. Note that the transformation to
an SIP is only possible by the assumption that the failure time can occur at any point in time.
If the failure time was dependent on the decision variables, a GSIP would be obtained. Note
also that typically the maximum over a finite number of functions in the objective (maxk)
is reformulated with an auxiliary variable. Another interpretation is that the semi-infinite
constraint is a generalized path constraint in the dynamic optimization problem.

The lower-level problem (38) is interesting in its own right, because it can be used to
check for the feasibility (or the extent of constraint violation) of a given scenario operation,
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e.g., obtained by an approximate method. Recall that this program must be solved to global
optimality, and this gives a motivation for the algorithms for dynamic optimization developed
in Sect. 3. Under the assumptions made on t l, f the lower-level problem (38) can be readily
solved with these algorithms.

In principle one could extend the (G)SIP proposals of [8,9,17,28,35] which are based
on a relaxation of the semi-infinite constraint. This is a very elaborate endeavor, but has the
advantage that a feasible point would be obtained finitely. A simpler (at least conceptually)
approach is to apply the approach described for bilevel programs in Sect. 2, or equivalently
extend the SIP algorithm by Blankenship and Falk [10]. A drawback of this algorithm is
that in general it only generates ε-feasible points finitely. Assuming that the constraint has a
built-in safety margin, this small violation would however be acceptable. In addition to the
lower-level program (38) the algorithm requires the solution of the lower-bounding problem:

min
pu ,tu, f

f u(xu(τ u = 1),pu)

s.t. gu, f (xu(τ u = 1),pu) ≤ 0

xu(τ u = 0) = xu
0(p

u) (39)

ẋu(τ u) = tu, f gu,c(xu(τ u),pu), ∀τ u ∈ (0, 1 ]

vd(tu, f ,pu, τ u,s) ≤ 0, ∀τ u,s ∈ T u,d ,

where T u,d is a finite subset of [0,1], and vd is given by a function evaluation (i.e., a dynamic
simulation) of the lower-level program for fixed values of τ u,s . Note that the lower-bounding
problem is significantly simplified by the assumption that the final time of the failure mode
t l, f is known.

The lower-bounding problem (39) can be easily reformulated as a multi-stage dynamic
optimization problem. Formalizing and implementing an efficient algorithm for (39) is a non-
trivial task. However, the theoretical development given in Sect. 3.3 suffices since both the
transition times and mode sequence is known at the transition times τ u,s . Compare also the
algorithm by Lee et al. [25,26] for hybrid systems with fixed mode sequence and transition
times.

The overall algorithm for the solution of (37) can be summarized by:

Algorithm 3 (Algorithm for scenario-integrated optimization without operational degrees of
freedom during scenario mode)

1. (Initialization)
Set T u,d = ∅.

2. (Lower Bounding)
Solve (39) globally.
IF Feasible THEN

• Set (p̄u, t̄ u, f ) equal to the solution point (εN L P -optimal point).

ELSE

• Terminate.

END
3. (Lower-Level Program)

Solve dynamic optimization problem (38) globally for pu = p̄u and tu, f = t̄ u, f .
Add the optimal solution point (εN L P -optimal point) to T u,d .
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Set v∗ equal to the optimal objective value (final overestimate).
IF v∗ < ε THEN

• (p̄u, t̄ u, f ) is an ε-optimal point; terminate.

ELSE

• Goto step 2.

END

This algorithm is guaranteed to converge finitely because the set T u,d increases in dimen-
sionality and in the worse case converges to the interval [0,1]. A formal proof can follow the
line of proof in [34].

Recall that it is necessary to solve (38) to global optimality. On the other hand, it is accept-
able to solve (39) to local optimality. In that case at termination Algorithm 3 will generate
an ε-feasible point (unless the solution of (39) fails).

4.2 Scenario mode with operational degrees of freedom

Abel and Marquardt [1] discussed also the case that the scenario operation has degrees of
freedom and gave a formulation (SIOP4) for a fixed failure time. In this subsection a con-
ceptual solution of this formulation is given, followed by a discussion of the complications
to extending to the more realistic case of a unknown failure time.

4.2.1 Fixed relative failure time

After a change of notation, formulation (SIOP4) by Abel and Marquardt [1] is given by the
following,

f u,∗ = min
pu ,pl ,tu, f ,tl, f

f u(xu(τ u = 1),pu)

s.t. gu, f (xu(τ u = 1),pu) ≤ 0

xu(τ u = 0) = xu
0(p

u)

ẋu(τ u) = tu, f gu,c(xu(τ u),pu), ∀τ u ∈ (0, 1]
(pl , t l, f ) ∈ arg min

pm ,tm, f
f l(xl(τ l = 1),pu,pm)

s.t. gl, f (xl(τ l = 1),pu,pm) ≤ 0

xl(τ l = 0) = xl
0(x

u(τ u = τ u,s),

pu,pm)

ẋl(τ l) = (tm, f − tu, f τ u,s)gl,c

(xl(τ l),pu,pm),

∀τ l ∈ (0, 1]
pu ∈ Pu ⊂ R

nu , pl ,pm ∈ Pl ⊂ R
nl , tu, f ≥ 0,

tm, f ≥ tu, f τ u,s, (40)

where τ u,s ∈ [0, 1] is now a constant. Note that the lower-level optimization variables
(pl and t l, f ) do not participate in the constraints or objective of the upper-level program.
However, they are included as variables of the upper-level optimization, to emphasize that
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it is necessary to have a feasible lower-level program and that they are part of the solution of
(40). Therefore, it is essentially a special case of the problem described by Yunt et al. [56]
and could be solved as a single-stage optimization problem. Instead, in the following the
conceptual solution of (40) in two steps is described since this leads to the more interesting
case of variable failure time.

In the first step a nominal operation (parameterized by pu and tu, f ) is sought which
minimizes the objective of the nominal operation, allowing for safe operation for the given
transition time; to do so a corresponding scenario operation (parameterized by pl and t l, f )
must be found. This is given by the following single-level optimization problem:

f u,∗ = min
pu ,pl ,tu, f ,tl, f

f u(xu(τ u = 1),pu)

s.t. gu, f (xu(τ u = 1),pu) ≤ 0

xu(τ u = 0) = xu
0(p

u)

ẋu(τ u) = tu, f gu,c(xu(τ u),pu), ∀τ u ∈ (0, 1 ]

gl, f (xl(τ l = 1),pu,pl) ≤ 0

xl(τ l = 0) = xl
0(x

u(τ u = τ u,s),pu,pl)

ẋl(τ l) = (t l, f − tu, f τ u,s) gl,c(xl(τ l),pu,pl),

∀τ l ∈ (0, 1 ]

pu ∈ Pu ⊂ R
nu , pl ∈ Pl ⊂ R

nl , tu, f ≥ 0, t l, f ≥ tu, f τ u,s,

tm, f ≥ tu, f τ u,s,

which is essentially a multi-stage dynamic optimization problem that can be solved with
the methods discussed in Sect. 3. Suppose that (p̄u, p̄l , t̄ u, f , t̄ l, f ) is a global solution of this
program. Then (p̄u, t̄ u, f ) gives the optimal nominal operation of (40). The reformulation
from bilevel to single-level is possible because the lower-level optimization variables (pl and
t l, f ) do not participate in the constraints or objective of the upper-level program [56].

To find the optimal scenario operation, pu = p̄u, tu, f = t̄ u, f are fixed and the following
problem is solved

min
pl ,tl, f

f l(xl(τ l = 1), p̄u,pl)

s.t. gl, f (xl(τ l = 1), p̄u,pl) ≤ 0

xl(τ l = 0) = xl
0(x

u(τ u = τ u,s), p̄u,pl)
(41)

ẋl(τ l) = (t l, f −tu, f τ u,s) gl,c(xl(τ l), p̄u,pl),

∀τ l ∈ (0, 1 ]

pl ∈ Pl ⊂ R
nl , t l, f ≥ tu, f τ u,s .

This is a regular dynamic optimization problem and can be solved with the methods discussed
in Sect. 3.

It should be noted that the scenario operation is only guaranteed to be optimal for the
particular values of the upper-level variables p̄u, t̄ u, f . A much lower objective value for the
scenario operation could be achieved for different values of the upper-level variables. This is
not a result of the two-step procedure utilized, but rather an inherent property of the bilevel
formulation. Bilevel programs have a hierarchy of objective functions, with the primary goal
of optimizing the upper-level program.

123



J Glob Optim (2009) 45:63–93 89

4.2.2 Variable failure time

In reality, the transition time τ u,s is typically unknown and can take any value in the interval
[0,1]. Abel and Marquardt [1] discuss an approximation where the transition time is only
allowed to take a finite number of values. This is not rigorous because feasibility of the sce-
nario-mode operation is not guaranteed. One could contemplate solving (40) parametrically
as a function of the transition time, but this would only be rigorous if the transition time
was known prior to the decision of the nominal operation, which is not realistic. Instead the
nominal operation must be independent of the failure time, while the scenario operation is
dependent on the failure time with the semi-infinite constraint that for any failure time there
exists a feasible scenario operation.

Similarly to the solution of the fixed failure time problem (40) the overall problem could
be solved in two steps. In the first step a nominal operation (parameterized by pu) is sought
which minimizes the nominal operation, allowing for safe operation for any transition time.

f u,∗ = min
pu ,tu, f

f u(xu(τ u = 1),pu)

s.t. gu, f (xu(τ u = 1),pu) ≤ 0

xu(τ u = 0) = xu
0(p

u)

ẋu(τ u) = tu, f gu,c(xu(τ u),pu), ∀τ u ∈ (0, 1 ]

v(tu, f ,pu) ≤ 0
(42)

v(tu, f ,pu) = max
τ u,s

min
pm ,tm, f

max
k

gl, f
k (xl(τ l = 1),pu,pm)

s.t.xl(τ l = 0) = xl
0(x

u(τ u = τ u,s),pu,pm, τ u,s)

ẋl(τ l) = (tm, f − tu, f τ u,s)gl,c

(xl(τ l),pu,pm), ∀τ l∈ (0, 1 ]

pu ∈ Pu ⊂ R
nu , pl ,pm ∈ Pl ⊂ R

nl , tu, f ≥ 0, t l, f ≥ τ u,s, tm, f ≥ τ u,s,

τ u,s ∈ [0, 1].
This program has three levels and requires significant development compared to the methods
described in Sect. 2. This development is outside of the scope of this article. Note that the
three levels result from allowing operational degrees of freedom in the scenario operation
and are not due to the different objective function. Note also that typically the maximum
over a finite number of functions in the objective (maxk) is reformulated with an auxiliary
variable.

At the second step, the nominal operation is fixed and problem (41) for the scenario oper-
ation can be optimized as a function of a known transition time via parametric optimization.
Simple discretization of the failure time is not rigorous for this problem because feasibility
for the other points is not guaranteed. Developing an extension of the dynamic optimization
algorithms from Sect. 3 to the parametric case is a major endeavor and outside the scope of
this article.

4.2.3 Illustrative example

To illustrate the additional modeling capabilities by (42) in this subsection an extension of
the car example by Abel and Marquardt [1] is considered. Recall that the nominal operation
is to cover a distance of 300 m in minimal time. The acceleration/deceleration is the control
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variable, while the distance and the velocity are the state variables. The initial and final con-
straints are to start and end with zero velocity. The path constraints are bounds on velocity
and acceleration. The scenario considered is a break failure down to 10% of the nominal
deceleration value and the hard constraint is that the distance covered is less than 350 m. In
the literature example a conservative approach is taken for the scenario mode, namely that the
driver uses the full remainder of the break power. This elimination of all operational degrees
of freedom results in the semi-infinite formulation (37). However, as a consequence of this
overly conservative approach, if the break failure occurs early in time, the car never reaches
the destination. The bilevel formulation allows a less conservative operation during failure,
for instance by imposing the constraint that the distance covered must be between 300 and
350 m for all failure times. In addition, an objective for the scenario operation can be set,
for instance minimization of the time required to stop the car or minimization of the final
distance.

This is not shown in formulation (42). For this extended car problem formulation (42)
becomes:

min
pu ,tu, f ,w

tu, f

s.t. vu(τ u = 0) = 0

du(τ u = 0) = 0

vu(τ u = 1) = 0

du(τ u = 1) = 300

v̇u(τ u) = 4

π
tu, f arctan(au(pu, τ u))− tu, f k f (v

u(τ u))2, ∀τ u ∈ (0, 1 ]

ḋu(τ u) = tu, f vu(τ u), ∀τ u ∈ (0, 1 ]

0 ≤ vu(τ u) ≤ 10, ∀τ u ∈ (0, 1 ]

−2 ≤ au(pu, τ u) ≤ 2, ∀τ u ∈ (0, 1 ]

w ≤ 0

w = max
τ u,s

min
pl ,tl, f

max
{

300 − dl(τ l = 1), dl(τ l = 1)− 350
}

s.t. vl(τ l = 0) = vu(τ u = τ u,s)

dl(τ l = 0) = du(τ u = τ u,s)

vl(τ l = 1) = 0

v̇l(τ l) = 4

π
(t l, f − tu, f τ u,s) arctan(al(pl , τ l))

− (t l, f − tu, f τ u,s)k f (v
l(τ l))2, ∀τ l ∈ (0, 1 ]

ḋl(τ l) = (t l, f − tu, f τ u,s)vl(τ l), ∀τ l ∈ (0, 1 ]

0 ≤ vl(τ l) ≤ 10, ∀τ l ∈ (0, 1 ]

−0.2 ≤ al(pl , τ l) ≤ 2, ∀τ l ∈ (0, 1 ]

t l, f ≥ τ u,s

tu, f ∈ [0, 1], τ u,s ∈ [0, 1]
pu ∈ Pu ⊂ R

nu , pl ∈ Pl ⊂ R
nl .
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5 Conclusions

An overview of recently developed dynamic and bilevel optimization algorithms is given.
Formulations for bilevel dynamic optimization are also analyzed. A combination of the
algorithms for bilevel and dynamic optimization presented can be applied to some of these
problems, such as the special case of scenario-integrated dynamic optimization wherein the
scenario operation has no operational degrees of freedom. Under some assumptions this
results in a bilevel dynamic optimization formulation which is tractable through a combina-
tion of the algorithms described. In future work numerical case studies and applications will
be performed. To that extent some modifications of the existing implementations for dynamic
optimization is required. Another interesting alternative is the extension of proposals from
the semi-infinite literature [8,9,17,28,35].

It would also be interesting to relax some of the assumptions made for the special case of
scenario-integrated dynamic optimization mentioned above. In particular it would be interest-
ing to consider the case that the failure time is dependent on the values of the state variables;
this would result in a GSIP as opposed to SIP formulations. Moreover, in general the final
time of the scenario mode may not be uniquely determined by a single constraint; it is unclear
whether this would result in currently tractable optimization problems.

A formulation for scenario-integrated optimization is refined, wherein the scenario has
operational degrees of freedom and possibly an objective. Unfortunately, this formulation
results into a currently intractable program with three levels, namely an optimization program
constrained by a max–min program embedded. The extension of the bilevel algorithm to this
case is of interest.

Acknowledgements This work is based upon work supported by the National Science Foundation under
Grant CTS-0521962.
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